# 4 Ways to Calculate the Area of a Triangle

The most common way to find the area of a triangle is to divide the product of its base and height by two. However, there are also other formulas that can be used depending on the known data. Using data on the hypotenuse and angle of a triangle, for example, can allow you to calculate the area of a triangle without needing to know its height.

## Step

### Method 1 of 4: Using the Base and Height of a Triangle

#### Step 1. Find the length of the base and the height of the triangle

The base is one of the sides of the triangle, while the height is the distance to the highest point in the triangle. The height of a triangle can be found by drawing a perpendicular line from the base to the opposite vertex. This data should be known, or you should be able to calculate it.

### For example, you might have a triangle with a base of 5 cm and a height of 3 cm

#### Step 2. Prepare the formula for the area of a triangle

The formula is Area=12(at){displaystyle {text{Area}}={frac {1}{2}}(at)}

, dengan a{displaystyle a}

adalah panjang alas segitiga dan t{displaystyle t}

#### Step 3. Enter the base and height data into the formula

Multiply the two values for the base and the height, then multiply the result by 12{displaystyle {frac {1}{2}}}

. Hasilnya adalah luas segitiga dalam satuan persegi.

• Contoh, jika panjang alas segitiga adalah 5 cm, dan tingginya 3 cm, Anda bisa menghitungnya:

Luas=12(at){displaystyle {text{Luas}}={frac {1}{2}}(at)}

Luas=12(5)(3){displaystyle {text{Luas}}={frac {1}{2}}(5)(3)}

Luas=12(15){displaystyle {text{Luas}}={frac {1}{2}}(15)}

Luas=7, 5{displaystyle {text{Luas}}=7, 5}

Dengan demikian, luas segitiga dengan alas 5 cm dan tinggi 3 cm adalah 7, 5 cm persegi.

#### Step 4. Find the area of a right triangle

If two sides of a triangle are perpendicular to each other, one side can be used as the height, and the other side as the base. So, even though the base and height of the triangle are not stated in the problem, you can tell by the length of the sides of the triangle. Thus, you can use the formula Area=12(at){displaystyle {text{Area}}={frac {1}{2}}(at)}

untuk mencari luasnya.

• Anda juga boleh menggunakan rumus ini jika mengetahui salah satu sisi segitiga dan panjang hipotenusanya. Hipotenusa adalah sisi terpanjang pada segitiga siku-siku. Ingatlah bahwa Anda bisa mencari panjang sisi segitiga siku-siku yang tidak diketahui dengan teorema Pythagoras (a2+b2=c2{displaystyle a^{2}+b^{2}=c^{2}}
• ).

• Contoh, jika panjang hipotenusa suatu segitiga dinyatakan sebagai c, tinggi dan alasnya adalah dua sisi lainnya (a dan b). Jika panjang hipotenusa diketahui 5 cm, dan alasnya 4 cm, gunakan teorema Pythagoras untuk mencari tingginya:

a2+b2=c2{displaystyle a^{2}+b^{2}=c^{2}}

a2+42=52{displaystyle a^{2}+4^{2}=5^{2}}

a2+16=25{displaystyle a^{2}+16=25}

a2+16−16=25−16{displaystyle a^{2}+16-16=25-16}

a2=9{displaystyle a^{2}=9}

a=3{displaystyle a=3}

Sekarang, Anda boleh memasukkan dua sisi yang saling tegak lurus (a dan b) ke dalam rumus sebagai alas dan tinggi segitiga:

Luas=12(at){displaystyle {text{Luas}}={frac {1}{2}}(at)}

Luas=12(4)(3){displaystyle {text{Luas}}={frac {1}{2}}(4)(3)}

Luas=12(12){displaystyle {text{Luas}}={frac {1}{2}}(12)}

Luas=6{displaystyle {text{Luas}}=6}

### Metode 2 dari 4: Menggunakan Panjang Sisi Segitiga

#### Step 1. Calculate half the perimeter of the triangle

To find half the perimeter of a triangle, first calculate the perimeter of the triangle by adding up the lengths of the three sides. Then multiply the result by 12{displaystyle {frac {1}{2}}}

.

• Contoh, jika suatu segitiga memiliki tiga sisi sepanjang 5 cm, 4 cm, dan 3 cm, separuh kelilingnya dapat dihitung sebagai berikut:

s=12(3+4+5){displaystyle s={frac {1}{2}}(3+4+5)}

s=12(12)=6{displaystyle s={frac {1}{2}}(12)=6}

#### Step 2. Prepare Heron's formula

The formula is Area=s(s−a)(s−b)(s−c){displaystyle {text{Area}}={sqrt {s(s-a)(s-b)(s-c)}}}

, dengan s{displaystyle s}

separuh keliling segitiga, dan a{displaystyle a}

, b{displaystyle b}

, dan c{displaystyle c}

panjang sisi-sisi segitiga.

#### Step 3. Plug half the perimeter and side lengths of the triangle into the formula

Make sure to include half the perimeter of the triangle in place of any s{displaystyle s}

dalam rumus tersebut.

• Contoh:

Luas=s(s−a)(s−b)(s−c){displaystyle {text{Luas}}={sqrt {s(s-a)(s-b)(s-c)}}}

Luas=6(6−3)(6−4)(6−5){displaystyle {text{Luas}}={sqrt {6(6-3)(6-4)(6-5)}}}

#### Step 4. Calculate the result of the calculation in brackets

Subtract half the perimeter of the triangle by the length of each side. Then, multiply the three results.

• Example:

Area=6(6−3)(6−4)(6−5){displaystyle {text{Area}}={sqrt {6(6-3)(6-4)(6-5)} }}

Luas=6(3)(2)(1){displaystyle {text{Luas}}={sqrt {6(3)(2)(1)}}}

Luas=6(6){displaystyle {text{Luas}}={sqrt {6(6)}}}

#### Step 5. Multiply the two values under the square root

Then find the square root. The result is the area of the triangle in square units.

• Example:

Area=6(6){displaystyle {text{Area}}={sqrt {6(6)}}}

Luas=36{displaystyle {text{Luas}}={sqrt {36}}}

Luas=6{displaystyle {text{Luas}}=6}

Dengan demikian, luas segitiga adalah 6 cm persegi.

### Metode 3 dari 4: Menggunakan Satu Sisi Segitiga Sama Sisi

#### Step 1. Find the length of one of the sides of the triangle

An equilateral triangle has the same side lengths and angles. So if one is known, all three are known.

### For example, you may have an equilateral triangle with a side length of 6 cm

#### Step 2. Prepare the formula for the area of an equilateral triangle

The formula is Area=(s2)34{displaystyle {text{Area}}=(s^{2}){frac {sqrt {3}}{4}}}

, dengan s{displaystyle s}

sama dengan panjang sisi segitiga sama sisi.

#### Step 3. Plug the lengths of the sides of the triangle into the formula

Make sure you change every variable s{displaystyle s}

dengan panjang sisi dan kemudian menguadratkan hasilnya.

• Contoh, jika segitiga sama sisi memiliki panjang sisi 6 cm, Anda bisa menghitung luasnya:

Luas=(s2)34{displaystyle {text{Luas}}=(s^{2}){frac {sqrt {3}}{4}}}

Luas=(62)34{displaystyle {text{Luas}}=(6^{2}){frac {sqrt {3}}{4}}}

Luas=(36)34{displaystyle {text{Luas}}=(36){frac {sqrt {3}}{4}}}

Step 4. Multiply the squared value by 3{displaystyle {sqrt {3}}}

.

Anda sebaiknya menghitung menggunakan kalkulator untuk mendapatkan hasil yang lebih akurat. Jika tidak, Anda boleh menggunakan 1, 732 sebagai pembulatan 3{displaystyle {sqrt {3}}}

.

• Contoh:

Luas=(36)34{displaystyle {text{Luas}}=(36){frac {sqrt {3}}{4}}}

Luasδ=62, 3524{displaystyle {text{Luas}}\delta ={frac {62, 352}{4}}}

#### Step 5. Divide the result by 4

The result is the area of the triangle in square units.

• Example:

Area=62, 3524{displaystyle {text{Area}}={frac {62, 352}{4}}}

Luas=15, 588{displaystyle {text{Luas}}=15, 588}

Dengan demikian, luas segitiga sama sisi dengan panjang sisi 6 cm sama dengan 15, 59 cm persegi.

### Metode 4 dari 4: Menggunakan Trigonometri

#### Step 1. Find the lengths of two adjacent triangles and the angle between them

Adjacent sides are sides that intersect at a certain point. The angle in question is the angle formed between the two sides.

### For example, you may have a triangle whose two adjacent sides are 150 cm and 231 cm. The angle between the two sides is 123 degrees

#### Step 2. Prepare trigonometric formulas for triangles

The formula is Area=bc2sin⁡A{displaystyle {text{Area}}={frac {bc}{2}}\sin A}

, dengan b{displaystyle b}

dan a{displaystyle a}

adalah dua sisi yang saling bersebelahan, dan A{displaystyle A}

#### Step 3. Plug the side lengths into the formula

Make sure to change the variable b{displaystyle b}

dan c{displaystyle c}

. Kalikan keduanya, kemudian bagi dengan 2.

• Contoh:

Luas=bc2sin⁡A{displaystyle {text{Luas}}={frac {bc}{2}}\sin A}

Luas=(150)(231)2sin⁡A{displaystyle {text{Luas}}={frac {(150)(231)}{2}}\sin A}

Luas=(34.650)2sin⁡A{displaystyle {text{Luas}}={frac {(34.650)}{2}}\sin A}

Luas=17.325sin⁡A{displaystyle {text{Luas}}=17.325\sin A}

#### Step 4. Plug the sine of the angle into the formula

You can find this value using a scientific calculator by typing in the size of the angle and then pressing the “SIN” button.

• For example, the sine of an angle of 123 degrees is 0.83867, so the formula would look like this:

Area=17.325sin⁡A{displaystyle {text{Area}}=17.325\sin A}

Luas=17.325(0, 83867){displaystyle {text{Luas}}=17.325(0, 83867)}

#### Step 5. Multiply the two values above

The result is the area of the triangle in square units.

• Example:

Area=17,325(0, 83867){displaystyle {text{Area}}=17,325(0, 83867)}

luas=14.529, 96{displaystyle {text{luas}}=14.529, 96}

.

dengan demikian, luas segitiga adalah 14.530 cm persegi.